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Based on the earlier published mathematical model the problem has been solved of the optimum 
distance between the wall flow deflecting rings. These rings of small width placed near the wall 
of a packed column provide for the equality of the integral mean densities of irrigation in region 
near the column wall and in the bulk of the packing. An equation has been derived for the 
optimum distance between the wall flow deflecting rings convenient for practical calculations. 
A practical example has been used to show that the wall flow deflecting rings substantially im
prove the distribution of liquid in the column. 

---------------

The use of the wall flow deflecting rings (WFDR)l of small width placed near the 
column wall appears to be effective means of checking the extent of the wall flow. 

With a suitable size of these rings one can achieve indepence of the intensity of mass 
transfer of the column diameter2 and hence also safe scale up. 

The investigation has been so far directed at the formulation of an adequate 
mathematical model of liquid flow in the presence of the WFDRs. Initially3, we have 
shown the applicability of the principal equations and boundary conditions on 
an example of a column with a single WFDR. As the next step4.5 we have worked 
out a mathematical model valid for the case of a number of WFDRs and solved 
it for various boundary conditions accounting for the effect of the WFDRs on the 
distribution of the liquid flow. It has been shown that in the most general case the 
liquid that hits the WFDR drains from the WFDR not only on its inner periphery, 
but, instead, mostly leaves via the packing pieces contacting the inner periphery 
of the WFDR. The model appears adequate provided that the boundary conditions, 
reflecting the above mechanism of liquid draining from the WFDR, are formulated 
with the aid of the probability theory starting form the equal probability of all 
spatial orientations of the packing pieces5 • 

As a logical next step appears the determination of the optimum distance between 
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the WFDRs. In fact, this optimum distance depends not only on the characteristics 
of the packing but also on the thermodynamic and kinetic parameters of the process. 
This, of course, gives rise to various alternatives of the optimization problems the 
solution of which calls for different approaches. 

The aim of the present paper is to investigate the conditions of equal mean veloci
ties of phases in the wall region and the bulk of the packing. This problem is of 
importance for almost all equilibrium processes - primarily the rectifications. 
Strong variations of the velocity over the column cross section lead to variable 
thermodynamic conditions in different zones of the packing and hence to con
siderable imparing of the separation process. Of particular importance these effects 
become during operation near the equilibrium, i.e. in the product refinement and 
in the rectifications near the minimum reflux. 

The Mathematical Model 

The principal equation of flow distribution under axial symmetry takes in the di. 
mensionless coordinate the following form 6 : 

The boundary condition 7 near the column wall reads: 

- of(r, z) = B[J(r, z) - CW)]. r = 1 . 
or 

(1) 

(2) 

The quantities Band C depend on the type of the packing and the relation between 
the size of the packing and the column diameter. The constants have been determined 
experimentally for certain types of packingsB. 

The solution takes then the form: 

fer, z) = Ao + IAn Jo(qnr) exp (-q~Z), (3) 
n 

where 

Ao = Cf(l + C) (4) 

and where qn designates the roots of the equation: 

(5) 
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The coefficients An in Eq. (3) depend on the initial distribution of liquid in the 
zone of the given WFDR and remain constant in the segment between two neigh
bouring WFDRs. They are determined gradually starting from the topmost WFDR 
(see Fig. 1) using the following recurrent formulas: 

A(k+ 1) _ 2(q~/B - 2c)2 {crt J ( r) + 
n - [(q~/B _ 2C)2 + q~ + 4C] JMqn) (1 + C) qn 1 qn t 

+ L r1 A~) exp ( - q!zo) 2 1 2 [qrn Jo( qnrl) J 1 (qrnrt) - qn Jo( qrnrt) J 1 (qnrt)] + 
m' q - q 

m*n m n 

(6) 

The process of draining of liquid from the WFDR is described by the distribution 
probability density ofradius <per) behind the integral in Eq. (6). For its determination 

2 

3 

k 

k+1 

"Dc =_2~ -------i 

FlO. 1 

Scheme of the column equipped with the wall flow deflection rings and a detail of the wall flow 
deflecting ring 
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we have derived the following expressions using the probability theory5: 

( ) _ 2 I d + .J[d2 - (rt + r)2] q> r - - n ---'---'=----'---.:'----------''--'" 

d1t r 1 - r 
for rl - d ;;;; r < 1 - d (7) 

+ 1 - - arCSIn --[ 2 .1-rJ S 
1t d (1 - r)2 

for 1 - d ;;;; r ;;;; rl . (8) 

Optimization of the Distance Between the WFDRs 

Since gas is usually well distributed over the column cross section the problem of 
ensuring uniform flow conditions in the wall region of the column usually reduces 
to ensuring uniform density of irrigation in the volume of the column. Mathematical 
modelling of the distribution of liquid with the aid of the adopted model (1)-(8) 
as well as the experiment show that there exists a region in the column with essentially 
uniform distribution of liquid. Substantial changes occur only in the proximity of 
the wall in region approximatelly four times the particle diameter wide. Apart from 
this the width of this region and the profile of the distribution of the density of 
irrigation vary along the length between the WFDRs (see the continuous lines in 
Fig. 2). From the standpoint of the aim of this paper it appears therefore useful to 
investigate the integral means of the density of irrigation along the height of the 
bed between two neighbouring WFDRs and over the column cross section in the 
bulk of the bed and in the wall region. The criteria of optimization may then be 
expressed as follows: 

J(z.) J} -f>'/(', z) d}Z 1 , 

zo[1 - (1 - t)2] 
(9) 

where t designates the width of the wall region and J(zo) the volume integral mean 
density of irrigation in the given zone. 

A question here arises as to the width of the wall region that should be adopted. 
Clearly the value of this width shall affect the resulting value of optimum distance zoo 

The packing in the model is viewed as a pseudohomogeneous medium with the 
exception of the probabilistic modelling of the flow distribution applied in the 
derivation of Eqs (7) and (8). Here we have taken into account effects concerning 
a single packing element. The final result, however, has the form of continuous 
random variables, which formally agrees with the concept of a pseudohomogeneous 
medium. 
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However, a single element of a random packing realizes practically perfect mixing 
of liquid. Consequently, the bed may be looked upon as a matrix of zones of perfect 
mixing. This necessarily causes its discrete character. For this reason and rigorousness 
of mathematical treatment the size of a zone in the optimization problem must not 
be smaller than this discrete limit. The maximum width of the wall zone shall be 
equal to the nominal size of the packing element, i.e. t = d. In order to clarify the 
effect of the width of the wall zone on the course of optimization of the distance zo, 
the optimization was carried out for t = d as well as for t = 2d. In addition, we have 
determined also the accuracy of the determination of the optimum distance under 
the condition I( zo) = 1 ± 0·01. In all cases it was found that a more definite value 
of z is obtained for t = d. The deviation of the optimum distance found for t = d 
from that found for t = 2d was less than the accuracy of its determination. Conse
quently, considering J(zo) = 1 ± 0'01, Zo found for t = d appears optimal also 
for t = 2d. 
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Profiles of the density of irrigation and the wall flow at three levels between the wall flow 
deflecting rings. Continuous Hnes indicate the profiles in the column equipped with WFDR, 
broken lines in the column without WFDR. Black rectangular boxes indicate the magnitude 
of the wall flow in the column with WFDR, empty boxes in the column without WFDR 
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The expression (9) takes then, after analytical integration, the following form 

J(z ) = 1 - (et(l + e»)(l - d)2 + 
o 1 _ (1 _ d)2 

+ 2(1 - d) 2 L A~k)(zo) 131t(qn(1 - d)] [exp (-q~zo) - 1] = 1. (10) 
zo[l - (1 - d) ] n qn 

The obtained equation was solved on a computer using the Newton method. 
From Eq. (10) it can be seen that the optimum distance depends on the coefficients 

An, which in turn depend on the sequence number of the WFDR. For this reason 
we have performed a numerical test in order to assess this effect. Table I shows the 
results of this test as well as the relative deviation between each pair of adjacent 
WFDRs. From the table it is seen that after the third WFDR the error is small and 
after the fifth WFDR the error does not exceed 0'2%. However, with the increasing 
sequence number of the WFDR the amount of computation increases. In order 
to save the effort all computations were carried out for the sequence number k = 5. 

The Expression for the Optimum Distance of the WFDRs 

Considering the awkward expressions and the amount of necessary computation 
involved in the optimization routine it is desirable to find a simpler expression for 
the optimum distance suitable for practieal calculations. In order to achieve this 
goal have utilized the theory of dimensions. 

In the most general case the optimum distance (ho) depends on the coefficient 
of liquid spread (D), the size of the packing element (Dp), column diameter (Dc) as 
well as the boundary condition parameters Band e. Considering the correlation 
for the parameter e having the form l 

(ll) 

TABLB I 

Optimum distance between WFDRs computed for several sequence numbers and pcrccntual 
variation 

k %0 % k %0 % 

1 0'3293 28'8 5 0-4339 0'14 
2 0'4244 1'51 6 0-4345 0'12 
3 0·4308 0'46 7 0-4350 0'07 
4 0·4328 0·25 8 0·4353 
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one can write that 

(l2) 

In the model equations (l)-(B) as well as in Eq. (10) all quantities were rendered 
dimensionless using the column radius R. This is not very suitable for the purpose 
of obtaining the general expression for the optimum distance of the WFDRs. On 
the one hand, the effect of the WFDR is dominant in the wall region of the packing 
where the characteristic dimension of the process is the dimension of the packing 
element (Dp). Accordingly, one can expect only a weak influence of the column 
radius on the optimum distance of the WFDRs. On the other hand, due to certain 
peculiarities of the solution of the optimization problem on a computer using Eq. 
(12) with respect to Dp is an order of magnitude smaller than when one uses the 
dimensionless form based on R. Taking this into account the general equation takes 
the form 

Z = hoD = n (D ID )"2 (SID )"3 K"4B"' D2 1 e p p • 

p 

(13) 

A large number of calculations have been carried out covering practically the whole 
possible range of dimensionless variables: 

Del Dp: 8 -100 

SjDp: 0·2-0·9 

K: 0·1-0·4 

B: 5-8. 

Processing further these data using the least square method numerical values of the 
constants were obtained with which Eq. (l3) takes the following form 

(l4) 

The mean arithmetic deviation of the equation amounts to 1·25% while the mean 
square deviation was 2·33%. The maximum error of the optimum distance was 
5· 3% which corresponds to maximum deviation J( zo) = 1·01. This means that in all 
cases the maximum non uniformity of the integral mean density of irrigation does not 
exceed 1 %. The confidence limits of the constant at the IX = 0·05 significance level 
are as follows: 

+ 0·041 
n1 = 0·124 _ 0.031 

n2 = 0·225 ± 0·030 

"3 = 1·096 ± 0·053 

"4 = -1·770 ± 0·060 

n5 = -0·310 ± 0·14. 
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As has been anticipated the effect of the relative column diameter measured in terms 
of the characteristic packing size is not strong. In fact the functional dependence 
(11), (ref. 8 ), which is the principal source of the effect of Dc/Dp, was studied only 
for Dc/ Dp ~ 25. It may be thus expected that for large values of the column to par
ticle diameter ratio the indicated proportionality is not valid as the value of the 
exponent n2 may be lower than the found one. Considering the relatively wide 
confidence limits for the exponent over B and the relatively narrow range of values 
of this parameter (for the Raschig rings - 7·0, for spheres - 6·7; see ref. 8) one can 
propose a simpler form of the correlation shown below 

In this case the mean arithmetic deviation was 3·6% and the mean square deviation 
was 5·9%. The maximum error amounted to 10% which causes the maximum non
uniformity of the integral mean density of irrigation equal to 2·8%. 

CONCLUSIONS 

The use of WFDRs spaced along the column length in optimum distances one from 
another substantially improves the hydrodynamic conditions in the column. This 
has been shown in Fig. 2 for a concrete example: Zo = 0.434.10- 2, De/Dp = 50, 
S/ Dp = 0·8 and the packing of Raschig rings. The continuous lines show the profile 
of the density of irrigation on three levels corresponding to 0·2zo, 0·5zo, and zoo 
The black boxes in this figure show the magnitude of the wall flow. It may be seen 
that the variations of the profile of the density of irrigation take place within the 
zone about 4d wide. In this case J( zo) = 0·99966 or, in another words, the nonuni
formity of the flow is less than 0·1%. For comparison the figure shows by broken 
lines and empty boxes the density of irrigation profile and the wall flow in the same 
column without WFDRs. In this latter case f = 0·4, which means that the volume 
integral mean density of irrigation in the wall region is by 60% less than in the bulk 
of the packing. 

This indicates that the effect of the WFDRs, in spite of their narrow width, is so 
large that convincingly justifies their use. 

Eq. (l4) alone, independently of its simple form, very well agrees with the earlier 
published resuIts9 • In this example for the parameters Dc = 200 mm; Dp = 25 mm; 
S = 5 mm and the packing of Raschig rings (K = 0·181, B = 7·0, D = 2·25 mm) 
the optimum ditance obtained was 106 mm which compares very favourably 
with the experimentally foud optimum value 100 mm. 
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